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The energy spectra of the two-magnon bound states in the Heisenberg-Ising antiferromagnet on the square
lattice are calculated using series expansion methods. The results confirm an earlier spin-wave prediction of
Oguchi and Ishikawa that the bound states vanish into the continuum before the isotropic Heisenberg limit is
reached.
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I. INTRODUCTION

We consider the anisotropic antiferromagnetic Heisenberg
model on a bipartite lattice,
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with S=1 /2 spins interacting with their nearest neighbors.
In the Ising limit x=0, the system is Néel ordered, with

spins up �Sz=+1 /2� on the A sublattice, let us say, and down
�Sz=−1 /2�� on the B sublattice. The one-particle “magnon”
excitations correspond to a single flipped spin on either the A
sublattice, with total spin Sz=−1, or on the B sublattice �Sz

=+1�. They have an excitation energy zJ /2, where z is the
lattice coordination number.

Separated two-particle excitations then have energy zJ in
this limit. But a two-particle excitation on neighboring A and
B sites has energy only �z−1�J, with total spin Sz=0, form-
ing a two-particle bound state.

When one takes the isotropic limit x→1, as is well
known, the energy gap for the single-magnon states vanishes.
The question then is: do the two-particle bound states survive
in this limit?

It is well known that two-magnon bound states exist for
the isotropic Heisenberg ferromagnet; see, for example, the
textbook discussion by Mattis.1 In recent years, there have
also been considerable discussions of bound states in antifer-
romagnetic systems with frustration or anisotropy.2,3 The
question still remains, however, whether there might also be
bound states in the simple, isotropic antiferromagnet. Ac-
cording to Mattis,1 this remained an “unanswered question”
in 1965 �Ref. 1, p. 166�.

The question was investigated using spin-wave theory by
Oguchi and Ishikawa4 in 1973. They used linear spin-wave
theory with some fourth-order interaction terms included.
They found that the two-magnon bound states merge into the
continuum as one goes from the Ising limit to the isotropic
limit so that none survive. This calculation neglects many
higher-order effects which might be important, however, so it
cannot be taken as definitive. Some numerical calculations
involving multimagnon states have also been carried out for
the isotropic antiferromagnet on the square lattice. These in-

clude studies of the spectral weights using series expansions5

and quantum Monte Carlo simulations6 and a continuous
unitary transformation �CUTS� study of the spectrum.7 None
of these works, however, have addressed the question of the
bound states.

In this Brief Report we explore the fate of the two-
magnon bound states for two particular cases: the one-
dimensional chain and the two-dimensional square lattice. In
one dimension, the model is exactly solvable, and the answer
is already known: we simply review the results. In two di-
mensions, we use linked cluster methods8 to obtain series
expansions in x up to order O�x8� for the bound-state ener-
gies and extrapolate the results to x=1 using standard meth-
ods. In summary, our results agree quite well with the spin-
wave predictions.4 The bound states disappear into the two-
particle continuum shortly before the isotropic limit x→1 is
reached.

II. ONE-DIMENSIONAL CASE

The one-dimensional model, i.e., the linear chain, is a
special case. The model can be solved exactly using the Be-
the ansatz,9 and exact expressions for the low-lying spectrum
have been obtained.10 The independent quasiparticles in this
case are not Sz= �1 magnons but Sz= �1 /2 “spinons,” or
domain walls. In the Ising limit x=0, for instance, the ground
state consists of alternating spins Sz= �1 /2 on even or odd
sites, respectively, or the reverse �Fig. 1�a��. A spinon or
domain wall consists of a neighboring pair of identical spins

FIG. 1. Spin configurations on the linear chain in the Ising limit:
�a� a Néel ground state; �b� a single spinon state; �c� two adjacent
spinons or a single magnon; and �d� two spinons separated by one
site or two adjacent magnons.
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in an otherwise alternating chain �Fig. 1�b��. For periodic or
antiperiodic boundary conditions, spinons can only be cre-
ated in pairs. Thus on an even lattice with periodic boundary
conditions, say, the lowest-lying excitations above the
ground state consist of a pair of spinons, which may be one
lattice spacing apart �Fig. 1�c��, two spacings apart �Fig.
1�d��, or any number apart. Figure 1�c� then corresponds to a
single spin flip, Fig. 1�d� to two neighboring spin flips, and
so on. The excitation energy in this limit, however, is �E
=J, independent of the spacing.

Johnson et al.10 obtained an exact expression for the low-
lying excitation energy at all x,

�E =
2K sinh �

� cosh �
��1 − k2 cos2 q1�1/2 + �1 − k2 cos2 q2�1/2� ,

�2�

where cosh �=1 /x, K is a complete elliptic integral of the
first kind whose nome is q=e−� and modulus k, and 0
�q1 ,q2�� are two free parameters corresponding to the
momenta of the two domain walls in each sector. This spec-
trum is the same in the Sz= �1 and the �doubly degenerate�
Sz=0 sectors so that the two S=1 /2 spinons combine to form
a degenerate S=1 triplet and S=0 singlet at all couplings x in
the range. So in this case, the state with two neighboring
flipped spins merely forms part of the two-spinon continuum.

III. SQUARE LATTICE

As the prime example of a bipartite system in two dimen-
sions, we consider the model on a square lattice. In this case
no exact solution is known, and so we have calculated nu-
merical estimates for the energy of the two-magnon state
using series methods.8 We perform an Ising expansion, tak-
ing the Ising Hamiltonian H0 in Eq. �1� as our unperturbed
starting point, when the bound state consists simply of a pair
of flipped spins on neighboring sites, as discussed above. A
perturbation series expansion in x is then calculated for the
bound-state energy, with V in Eq. �1� as the perturbation
operator. As a technical point, we note that the bound state
lies in the same sector as the ground state, and hence a
“multiblock” diagonalization algorithm8 must be employed.

Note also that there is one bound-state configuration for
each lattice bond, making a total of four times as many con-
figurations as for either of the single-magnon states. Corre-
spondingly, we obtain results for four different paths
�1 , . . . ,�4 in the Brillouin zone, as shown in Fig. 2, whereas

only the �1 mode is independent for the single-magnon state.
The calculations have been carried out through O�x8�.

Since only even-order terms appear, this corresponds to only
five series coefficients at any fixed momentum. The leading
order terms in the dispersion relation for the bound-state ex-
citation energy are
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The complete series coefficients at selected momenta are
listed in Table I.

Estimates of the bound-state energy as a function of x
were now obtained using Padé approximants to extrapolate
the series. The estimated errors in the extrapolated values are
always somewhat subjective.11 From the table of Padé ap-
proximants, the outliers with obvious “defects” are excluded,
where a defect consists of a spurious pole with low residue at
a small coupling value. The remaining approximants are then
weighted to favor the higher-order approximants, and the
error is estimated from the scatter among the remaining
weighted estimates.

Since the number of coefficients is small, the accuracy of
the extrapolation is also low. At smaller values of x, never-
theless, quite good estimates are possible. For example, Fig.
3 shows dispersion relations for the four bound-state modes
at x=0.8, as compared with the lower bound of the two-
particle continuum. It can be seen that all four modes remain

TABLE I. Ising expansion series coefficients in powers of x for the excitation energy �E of the two-particle bound state at selected
momenta k= �kx ,ky�.

�kx ,ky� �0,0� �� /2,0� �� ,0� �� /2,� /2� �� ,��

0 3.00000000000000 3.00000000000000 3.00000000000000 3.00000000000000 3.00000000000000

2 −1.66666666666667 −0.804737854124365 −0.166666666666666 −0.333333333333334 −0.333333333333333

4 0.299074074074084 0.412245678974668 −0.0712962962962898 0.403819444444453 −0.727546296296289

6 −2.21500154321004 −0.955337158046685 −0.371659167631400 −0.517003970550667 −0.576196887860336

8 5.95191488216504 2.06716252423366 0.237274308271624 0.738026171850790 −0.604532331023972

FIG. 2. Cuts through the Brillouin zone �1-�4 corresponding to
the four two-magnon bound states.
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FIG. 3. Spectrum of the two-
particle bound states �1-�4 at x
=0.8. The dashed lines mark the
lower edge of the two-particle
continuum.

(b)(a)

(c) (d)

FIG. 4. Spectrum of the two-
particle bound states �1-�4 at x
=1.0. The dashed lines mark the
lower edge of the two-particle
continuum.
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bound below the intermediate plateau of the continuum, and
only near k=0 do three out of the four modes merge into the
continuum. The first mode appears to remain bound at all
momenta.

At x=1.0 it is a different story, as shown in Fig. 4. In
short, it appears that none of the four modes remain bound at
any momentum. The nominal error bars are much larger in
this case first because x is larger but also because we may
expect some sort of singular behavior where the bound state
merges with the continuum. The clearest picture is obtained
for the first mode, where near k=0 the estimates lie on the
lower edge of the continuum, within errors. A Huse
transform12 was performed before the extrapolation, but
there is still an apparent leveling off at very small momenta:
this may be attributed to the small number of terms in the
series. At larger momenta, the estimates generally lie well
above the continuum lower bound.

These results may be compared with the spin-wave results
of Oguchi and Ishikawa,4 who calculated the bound-state en-
ergies as functions of x for two specific momenta. At k
= �0,0�, they found that the bound states merged with the
continuum in the range 0.7�x�0.95; we find only one
bound state remaining at x=0.8, in agreement with their re-
sults. At k= �� /2,� /2�, they found the merger to occur at
somewhat larger values 0.96�x�0.98; we find that all four
states remain bound at x=0.8 but have vanished by x=1.0,
once more in agreement with their results. Of course, the

actual values for the energies have changed as higher-order
terms are added in but not by a large amount.

IV. CONCLUSIONS

We have used series expansion methods to calculate the
energy of two-magnon bound states in the anisotropic
Heisenberg-Ising antiferromagnet on the square lattice. We
find that the bound states do not survive in the isotropic
limit, in agreement with the spin-wave predictions of Oguchi
and Ishikawa.4 There are no bound states in the linear chain
model either. Hence one may extrapolate that there will be
no bound states in the isotropic Heisenberg antiferromagnet
on any bipartite lattice, in sharp distinction to the ferromag-
netic case. Oguchi and Ishikawa4 gave some qualitative ar-
guments why this might be so.
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